Vaporization behavior of fuel droplets in a hot air stream

S. K. Aggarwal and G. Chen

Department of Mechanical Engineering, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680, U.S.A.

and

T. A. Jackson and G. L. Switzer

Wright Patterson AFB, OH 45433, U.S.A.

(Received 24 January 1990 and in final form 14 November 1990)

1. INTRODUCTION

The gasification behavior of a liquid droplet provides a fundamental input for the modeling of many spray systems, and has been studied extensively [1–4]. Theoretical analysis for the multicomponent fuel droplet presents several complexities absent in a similar analysis for the single component droplet. First, the phase-change process at the droplet surface and the transport of a fuel vapor mixture in the gas phase need to be properly accounted for. Second, the evaporation process is inherently time varying due to the continuous change in the composition and temperature of the droplet as vaporization proceeds. Another difference between the two cases is due to the phenomenon of microexplosion [2].

As indicated above, the literature on the gasification behavior of an isolated droplet is extensive. However, most of these studies deal with droplet combustion or evaporation under high-temperature conditions. Not much information is available on the behavior of evaporating droplets in relatively low-temperature air streams. Under such conditions, the possibility of an envelope flame is precluded and the droplet gasification rate is low. The droplet heat-up time may not be negligibly small compared to its lifetime, although the latter is relatively large and the liquid-phase transient processes may still be important.

In this paper, the vaporization behavior of pure and multicomponent fuel droplets flowing in a well-characterized laminar flow is studied. The predictions of three vaporization models are compared with the experimental data.

2. THEORETICAL MODEL

The theoretical model involves the calculation of velocity, size, and surface properties of an evaporating droplet along its trajectory in a laminar hot air flow. The time-dependent Lagrangian equations for the droplet position, velocity, and size are solved numerically.

In most circumstances, the gas-phase transient time is much smaller than the characteristic time for the liquid-phase processes. Consequently, the gas-phase processes can be considered as quasi-steady and the equations can be solved analytically [3] for the non-dimensional mass evaporation rate \dot{m}, the fractional mass evaporation rate e_i, and the effective latent heat H as

$$\dot{m} = \ln \left(1 + \frac{Y_{in} - Y_{fo}}{1 - Y_{in}}\right)$$

$$e_i = \frac{\dot{m} \dot{Y}_{in}}{m} = Y_{in} + (1 - Y_{in}) \frac{Y_{in} - Y_{fo}}{Y_{in} - Y_{fo}}$$

$$H = \left(1 - Y_{in}
ight) \frac{\tilde{T}_i - \tilde{T}_g}{Y_{in} - Y_{fo}}$$

At any given time instant, the gas-phase species mole fraction at the droplet surface can be obtained by means of Raoult's law

$$X_i = X_i X_{oi}$$

where X_{oi} is the equilibrium vapor mole fraction for the pure liquid i given by the Clausius-Clapeyron relation

$$X_{oi} = (1/P) \exp \left[L_i W_i / \left(R(T_{in}) - 1 \left(T_{in} - T_g\right)\right)\right]$$

Finally, Y_i is related to the gas-phase species mass fraction, Y_{in}, through

$$Y_i = Y_{in} W_i \left\{\left(1 - \sum_{i=1}^{n} X_i\right) + \sum_{i=1}^{n} X_i W_i\right\}$$

where W_i is the ratio of the molecular weight of the ith vaporizing species to an average molecular weight of all the non-condensable inert species at the droplet surface. As indicated above, the liquid-phase transient processes appear through the variables X_i, T_i, and T_{in}. To examine their influence, three liquid-phase models considered are the infinite-diffusion, diffusion-limit and thin-skin models. The first two models have been described elsewhere [7,8]. The implicit assumption in the infinite-diffusion model is that the internal circulation is so fast that the droplet temperature and composition are maintained spatially uniform, though still temporally varying. The volatile components are continuously brought to the droplet surface where they are preferentially vaporized. The temporal variations of droplet composition and temperature are determined from the overall mass and energy conservation equations [8]. In the diffusion-limit model, the transient heat and mass transport in the liquid are assumed to be governed by the unsteady heat and mass diffusion equations [7].
2670 Technical Notes

NOMENCLATURE

- \(C_D \): drag coefficient
- \(C_p \): specific heat at constant pressure
- \(D \): mass diffusivity
- \(g \): gravitational acceleration
- \(h \): enthalpy
- \(H \): effective latent heat
- \(H/L \): effective latent heat
- \(K \): thermal conductivity
- \(L \): latent heat
- \(L/T \): latent heat
- \(L \): latent heat
- \(m \): mass
- \(m_{gasification} \): mass gasification rate at surface
- \(n \): number of species
- \(P \): pressure
- \(r \): radial distance
- \(R \): gas constant
- \(Re \): Reynolds number
- \(t \): time
- \(T \): temperature
- \(T/L \): temperature
- \(T /\alpha \): dimensional temperature
- \(T \): temperature
- \(V \): velocity
- \(W \): molecular weight
- \(x \): gas phase mole fraction
- \(X \): liquid mole fraction
- \(Y \): mass fraction.

Greek symbols

- \(\alpha \): thermal diffusivity
- \(\delta \): fractional mass vaporization rate
- \(\lambda \): thermal conductivity
- \(\mu \): viscosity
- \(\rho \): density.

Subscripts

- \(b \): value corresponding to normal boiling temperature
- \(f \): fuel
- \(g \): gas phase
- \(l \): liquid phase
- \(r \): value corresponding to reference state
- \(s \): droplet surface
- \(\infty \): value at infinity.

The thin-skin model is based on the assumption of high liquid Lewis number and high droplet evaporation rate. Under these conditions, we may assume that the droplet surface temperature and its concentration distributions remain constant at \(T_s \) and \(Y_x(t) \), respectively. This is an extension of the single-component \(D^2 \)-law to the multi-component case. With the above assumptions, it is unnecessary to study transient liquid-phase processes, the effective latent heat is equal to the actual latent heat, and the constant concentration profiles are given by

\[
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dY_s}{dr} \right) = Le_c K m \frac{dY_s}{dr}.
\]

The solution of equation (1) is

\[
Y_{hi}(r, T_s) - Y_{ho} = \frac{1}{1 - \sum_{j=1}^{n} \frac{r_{j-1}}{r_j}} \exp \left[-K m Le_c (1 - f) \right].
\]

The only unknown parameter is \(T_s \) can be found by solving equations (1)-(3).

As far as the convective correction is concerned, most approaches are semi-empirical. At higher Reynolds numbers, the Ranz-Marshall correlation [3] is frequently adopted. However, the comparison of calculated and experimental results indicated that the following relation [9] provides the best correlation in the present study:

\[
\frac{h_{cal}}{h_{ref}} = 1 + 0.24 Re^{1/2}.
\]

The relative gas velocity also produces a drag force. At any time \(t \), the droplet trajectory can be found from the following equation:

\[
\rho g \pi r^4 \frac{dZ}{dt} = \frac{3}{8} \pi r^4 \rho_e \left(V_a - \frac{dZ}{dt} \right) \left(V_a - \frac{dZ}{dt} \right) C_D - g(\pi r^2)(\rho_l - \rho_a).
\]

where \(C_D \) is the drag coefficient and is correlated to the Reynolds number [10] as

\[
C_D = 27 Re^{-0.84}.
\]
Figure 2 shows the variation of the droplet diameter squared obtained experimentally and predicted by the thin-skin, diffusion-limit and infinite-diffusion models. Note that several data sets were obtained to assess the repeatability of data, although only one is shown. The overall agreement between predictions and experiments is quite good. For hexane, the calculated values are not very sensitive to the models. However, for decane, some sensitivity to the models is indicated, where the diffusion limit and infinite diffusion models show better agreement with the experimental data compared to the thin-skin model. These results can be explained by following the droplet surface temperature history. For hexane, the boiling temperature is relatively low, and the evaporation proceeds at a relatively fast rate. However, the latent heat needed for phase change is more than the heat transferred to the droplet surface. Consequently, the surface temperature would decrease until the heat needed for evaporation is provided by the ambiance. Therefore, the wet-bulb temperature is below the initial droplet temperature. The liquid-phase transient time is very short, and all three models predict almost the same surface temperature and, therefore, the droplet size variation is not sensitive to the models. For decane, however, the wet-bulb temperature is relatively high and the droplet transient heating becomes important. As a result, the vaporization behavior is sensitive to the models. Initially, the evaporation rate is very low and the amount of heat needed for evaporation is smaller than the heat transferred to the droplet surface. Consequently, the droplet temperature keeps increasing until it reaches an equilibrium temperature. Because the thin-skin model neglects the transient droplet heating, it predicts a faster vaporization rate than the other two models. Thus, the important observation is that the difference between the models is more significant for heavier fuels which have higher boiling temperatures and, thus, a longer transient heating period. It is also important to note that for the conditions considered the rate of heat transport to the surface is not much faster than the rate of heat transport within the droplet for the diffusion-limit model. Consequently, this model predicts almost the same vaporization rate as the infinite-diffusion model. However, for higher ambient temperatures, the rate of heat transfer to the droplet surface would be higher, and the difference between these two models will become apparent [8].

Figure 3 shows the variation of the diameter squared along the trajectory of a hexane/decane droplet with the initial mass fraction of each being 0.5. It is interesting to note that the experimental data indicates a batch-distillation type of behavior, which is better simulated by the infinite-diffusion model. It means that the assumption of a spatially uniform liquid temperature and composition may be a good approximation for the present case. This is due to the slow rate of vaporization at relatively low environment temperature which makes the droplet evaporation time comparable to the thermal/mass diffusion times. The thin-skin model does not show as good an agreement as the other two models. This is due to the excessively slow rate of evaporation and long liquid transient time causing the assumption of constant temperature and composition profiles to deviate from the real situation.

Figure 4 shows the variation of the surface mass fraction of liquid hexane and the surface temperature along the droplet
Fig. 3. Diameter squared along the trajectory for a multicomponent fuel droplet.

trajectory. Significant disagreements exist among the three models. For the thin-skin model, the surface concentration as well as temperature, by definition, have constant values. For the diffusion-limit model, the surface concentration initially decreases much faster than that for the infinite-diffusion model and then attains an almost constant value. For the latter model, the mass fraction of hexane decreases steadily due to the preferential vaporization of more volatile species, whereas the surface temperature initially has a constant value given by the wet-bulb temperature of the hexane component. It then continues to increase slowly as the wet-bulb temperature increases following the change in the liquid surface composition. Finally it approaches the wet-bulb temperature of decane. There is a transition region in between the two inflexion points of the curve which corresponds to the depletion of the hexane component.

The differences in the surface temperature and liquid concentrations cause differences in the predictions of surface vapor concentrations. It is observed, though not shown here, that the liquid concentration has a more dominant effect on the surface vapor concentration. As a result, the diffusion-limit model underpredicts the vaporization rate compared to the infinite-diffusion model. Note that this behavior is observed for low ambient temperatures. At relatively high ambient temperatures, the behavior is significantly different [3].

Figure 5 shows the sensitivity of predictions to the methods of calculating reference properties. For methods 1 and 2, the commonly-used one-third rule is employed. For method 3, the scheme of Law and Williams [11] is used to obtain the reference properties. An important observation is that method 1 which only considers the variable temperature effect shows significant differences with the experimental results. The difference between methods 2 and 3, which consider the temperature as well as fuel vapor effects, is negligible.

4. CONCLUSIONS

The vaporization behavior of pure and multicomponent fuel droplets in a laminar hot air flow has been studied. Predictions of three vaporization models have been compared with experimental data. Important conclusions are:

1. The predicted droplet velocity shows excellent agreement with the measured data, indicating that the solid-sphere drag law is quite adequate for the conditions considered. However, an accurate calculation of the gas-film properties

Fig. 4. Liquid hexane mass fraction and temperature at the droplet surface along the trajectory.

Fig. 5. Comparison of droplet size squared along the trajectory with different methods of calculating thermo-physical properties.
Calculation of scattering fractions for use in radiative flux models

R. KOENIGSDORF, F. MILLER and R. ZIEGLER
Deutsche Forschungsanstalt für Luft- und Raumfahrt, Institut für Technische Thermodynamik,
Pfaffenwaldring 38/40, 7000 Stuttgart 80, Germany

(Received 15 August 1990)

INTRODUCTION

One of the most widely used methods to solve the equation of radiation transfer in participating media is the two-flux model. Apparently first introduced in the field of astrophysics where it is credited to Schuster and Schwarzschild [1], it has since been applied to problems in combustion, radiation transfer through insulation, solar energy absorption, atmospheric physics, and spectroscopy (where it is commonly referred to as the Kubelka-Munk theory). The initial two-flux approximation, useful only for diffuse one-dimensional radiation transfer, has been extended to two and three dimensions—four and six fluxes respectively—and has also been modified to allow for partially collimated incident radiation. In the case of scattering media, factors that determine how the scattered light is distributed in the various axial directions appear in the flux equations. This note discusses and compares various methods of determining these scattering fractions for the two- and six-flux models starting from the properties of the scattering particles comprising the medium. Results are presented for two sample media, one purely scattering and one that also absorbs, and approximate methods for evaluating the scattering fractions are shown to be valid in certain ranges of the particle size parameter.

TWO-FLUX MODEL

The derivation of the two-flux equations has been rigorously laid out by Brewster [2] and others and will not be repeated in detail here. Briefly, however, the general equation of transfer for radiative intensity i in a general direction S in a non-emitting participating medium [1]

$$\frac{d\omega}{dS} = -\alpha_i i(S) - \sigma_i \omega_i(S) + \sigma_{ai} \int_{-\pi}^{\pi} i(S, \omega) \Phi(\lambda, \omega, \omega) d\omega,$$ \hspace{1cm} (1)

is simplified by assuming that the intensity is constant within each of two opposed solid angles (which are hemispheres in the two-flux case) corresponding to two coordinate axis directions, say x and $-x$. This allows the integral in equation (1) to be solved for each hemisphere and results in the two equations.